howling
2025-10-24 | 分类:未分类 | 评论:0人 | 浏览:63次
- 正文内容
- 我来说两句:(已有0人参与)
https://theses.eurasip.org/media/theses/documents/van-waterschoot-toon-design-and-evaluation-of-digital-signal-processing-algorithms-for-acoustic-feedback-and-echo-cancellation.pdf
https://ggwujun.github.io/blog-front/%E6%90%9E%E5%AE%9A%E9%9F%B3%E9%A2%91%E6%8A%80%E6%9C%AF/
https://github.com/audiolabs/rir-generator
https://github.com/audiolabs/anechoic-noise
https://github.com/audiolabs/torch-pesq
https://github.com/audiolabs/SC-Wind-Noise-Generator
https://github.com/audiolabs/anf-generator
https://github.com/audiolabs/blind-multi-room-model
https://github.com/audiolabs/PESQ
https://github.com/audiolabs/webMUSHRA
https://github.com/Ryuk17/Aura/tree/master
https://blog.csdn.net/weixin_42141751
https://github.com/aflyingwolf
http://www.kaldi-asr.org/
https://htk.eng.cam.ac.uk/
https://www.cnblogs.com/lulululuyan/p/18141262
https://zhuanlan.zhihu.com/p/679689442
https://www.aigei.com/sound/class/xiao_jiao/
https://doc.zh-jieli.com/AC104/zh-cn/master/sound_effect/notch_howling/notch_howling.html
https://blog.csdn.net/hmq252198885/article/details/144721693
% LMS算法的MATLAB实现
function [w, e] = LMS(d, x, mu, M)
% 输入:
% d – 期望信号
% x – 输入信号
% mu – 步长
% M – 滤波器阶数
% 输出:
% w – 滤波器权重
% e – 误差信号
L = length(d);
w = zeros(M, 1);
e = zeros(L, 1);
for n = M:L
x_n = x(n:-1:n-M+1); % 输入信号的当前样本和前M-1个样本
y_n = w’ * x_n; % 滤波器输出
e(n) = d(n) – y_n; % 误差信号
w = w + mu * e(n) * x_n; % 权重更新
end
end
% NLMS算法的MATLAB实现
function [w, e] = NLMS(d, x, mu, M)
% 输入:
% d – 期望信号
% x – 输入信号
% mu – 步长
% M – 滤波器阶数
% 输出:
% w – 滤波器权重
% e – 误差信号
L = length(d);
w = zeros(M, 1);
e = zeros(L, 1);
for n = M:L
x_n = x(n:-1:n-M+1); % 输入信号的当前样本和前M-1个样本
y_n = w’ * x_n; % 滤波器输出
e(n) = d(n) – y_n; % 误差信号
P = x_n’ * x_n; % 输入信号的功率
w = w + mu * e(n) * x_n / (P + 1e-6); % 权重更新,加入小量避免除零
end
end